library(dplyr)
library(palmerpenguins)
<- palmerpenguins::penguins penguins
Tidy Data Manipulation: dplyr vs siuba
There are a myriad of options to perform essential data manipulation tasks in R and Python (see, for instance, my other posts on dplyr vs ibis and dplyr vs pandas). However, if we want to do tidy data science in R, there is a clear forerunner: dplyr
. In the world of Python, siuba
is around since 2019 and a dedicated port of dplyr
and other R libraries. In this blog post, I illustrate their syntactic similarities and highlight differences between these two packages that emerge for a few key tasks.
Before we dive into the comparison, a short introduction to the packages: the dplyr
package in R allows users to refer to columns without quotation marks due to its implementation of non-standard evaluation (NSE). NSE is a programming technique used in R that allows functions to capture the expressions passed to them as arguments, rather than just the values of those arguments. The primary goal of NSE in the context of dplyr
is to create a more user-friendly and intuitive syntax. This makes data manipulation tasks more straightforward and aligns with the general philosophy of the tidyverse
to make data science faster, easier, and more fun.1
The siuba
package in Python offers a similar user-friendly experience for data manipulation by allowing users to work with data frames in a way that mimics dplyr
’s intuitive syntax. siuba
leverages Python’s syntax and capabilities, enabling operations like filtering, selecting, and mutating without the need for extensive boilerplate code. siuba
tries to capture the spirit of concise and expressive data manipulation via NSE by introducing siu expressions and a pipe (which we will both use below). This approach aligns with the broader goals of making data science more accessible and efficient, providing Python users with a powerful tool that enhances productivity and readability in their data analysis workflow.
Loading packages and data
We start by loading the main packages of interest and the popular palmerpenguins
package that exists for both R and Python. We then use the penguins
data frame as the data to compare all functions and methods below.
from siuba import _, filter, arrange, select, rename, mutate, group_by, summarize
from palmerpenguins import load_penguins
= load_penguins() penguins
Work with rows
Filter rows
Filtering rows works very similarly for both packages, they even have the same function names: dplyr::filter()
and siuba.filter()
. To select columns in siuba
, you need the siuba._
expression that allows you to specify what action you want to perform on a column and that is later evaluated by functions such as siuba.filter()
|>
penguins filter(species == "Adelie" &
%in% c("Biscoe", "Dream")) island
# A tibble: 100 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>
1 Adelie Biscoe 37.8 18.3 174 3400
2 Adelie Biscoe 37.7 18.7 180 3600
3 Adelie Biscoe 35.9 19.2 189 3800
4 Adelie Biscoe 38.2 18.1 185 3950
5 Adelie Biscoe 38.8 17.2 180 3800
6 Adelie Biscoe 35.3 18.9 187 3800
7 Adelie Biscoe 40.6 18.6 183 3550
8 Adelie Biscoe 40.5 17.9 187 3200
9 Adelie Biscoe 37.9 18.6 172 3150
10 Adelie Biscoe 40.5 18.9 180 3950
# ℹ 90 more rows
# ℹ 2 more variables: sex <fct>, year <int>
(penguins >> filter((_.species == "Adelie") &
"Biscoe", "Dream"])))
(_.island.isin([ )
species island bill_length_mm ... body_mass_g sex year
20 Adelie Biscoe 37.8 ... 3400.0 female 2007
21 Adelie Biscoe 37.7 ... 3600.0 male 2007
22 Adelie Biscoe 35.9 ... 3800.0 female 2007
23 Adelie Biscoe 38.2 ... 3950.0 male 2007
24 Adelie Biscoe 38.8 ... 3800.0 male 2007
.. ... ... ... ... ... ... ...
147 Adelie Dream 36.6 ... 3475.0 female 2009
148 Adelie Dream 36.0 ... 3450.0 female 2009
149 Adelie Dream 37.8 ... 3750.0 male 2009
150 Adelie Dream 36.0 ... 3700.0 female 2009
151 Adelie Dream 41.5 ... 4000.0 male 2009
[100 rows x 8 columns]
Slice rows
dplyr::slice()
takes integers with row numbers as inputs, so you can use ranges and arbitrary vectors of integers. There is no direct equivalent in siuba
, but we can just use the iloc
method to replicate the results. For instance, to the the same result of slicing rows 10 to 20, the code looks as follows (note that indexing starts at 0 in Python, while it starts at 1 in R):
|>
penguins slice(10:20)
# A tibble: 11 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>
1 Adelie Torgersen 42 20.2 190 4250
2 Adelie Torgersen 37.8 17.1 186 3300
3 Adelie Torgersen 37.8 17.3 180 3700
4 Adelie Torgersen 41.1 17.6 182 3200
5 Adelie Torgersen 38.6 21.2 191 3800
6 Adelie Torgersen 34.6 21.1 198 4400
7 Adelie Torgersen 36.6 17.8 185 3700
8 Adelie Torgersen 38.7 19 195 3450
9 Adelie Torgersen 42.5 20.7 197 4500
10 Adelie Torgersen 34.4 18.4 184 3325
11 Adelie Torgersen 46 21.5 194 4200
# ℹ 2 more variables: sex <fct>, year <int>
9:19] penguins.iloc[
species island bill_length_mm ... body_mass_g sex year
9 Adelie Torgersen 42.0 ... 4250.0 NaN 2007
10 Adelie Torgersen 37.8 ... 3300.0 NaN 2007
11 Adelie Torgersen 37.8 ... 3700.0 NaN 2007
12 Adelie Torgersen 41.1 ... 3200.0 female 2007
13 Adelie Torgersen 38.6 ... 3800.0 male 2007
14 Adelie Torgersen 34.6 ... 4400.0 male 2007
15 Adelie Torgersen 36.6 ... 3700.0 female 2007
16 Adelie Torgersen 38.7 ... 3450.0 female 2007
17 Adelie Torgersen 42.5 ... 4500.0 male 2007
18 Adelie Torgersen 34.4 ... 3325.0 female 2007
[10 rows x 8 columns]
Arrange rows
To orders the rows of a data frame by the values of selected columns, we have dplyr::arrange()
and siuba.arrange()
.
|>
penguins arrange(island, desc(bill_length_mm))
# A tibble: 344 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>
1 Gentoo Biscoe 59.6 17 230 6050
2 Gentoo Biscoe 55.9 17 228 5600
3 Gentoo Biscoe 55.1 16 230 5850
4 Gentoo Biscoe 54.3 15.7 231 5650
5 Gentoo Biscoe 53.4 15.8 219 5500
6 Gentoo Biscoe 52.5 15.6 221 5450
7 Gentoo Biscoe 52.2 17.1 228 5400
8 Gentoo Biscoe 52.1 17 230 5550
9 Gentoo Biscoe 51.5 16.3 230 5500
10 Gentoo Biscoe 51.3 14.2 218 5300
# ℹ 334 more rows
# ℹ 2 more variables: sex <fct>, year <int>
(penguins >> arrange(_.island, -_.bill_length_mm)
)
species island bill_length_mm ... body_mass_g sex year
185 Gentoo Biscoe 59.6 ... 6050.0 male 2007
253 Gentoo Biscoe 55.9 ... 5600.0 male 2009
267 Gentoo Biscoe 55.1 ... 5850.0 male 2009
215 Gentoo Biscoe 54.3 ... 5650.0 male 2008
259 Gentoo Biscoe 53.4 ... 5500.0 male 2009
.. ... ... ... ... ... ... ...
80 Adelie Torgersen 34.6 ... 3200.0 female 2008
18 Adelie Torgersen 34.4 ... 3325.0 female 2007
8 Adelie Torgersen 34.1 ... 3475.0 NaN 2007
70 Adelie Torgersen 33.5 ... 3600.0 female 2008
3 Adelie Torgersen NaN ... NaN NaN 2007
[344 rows x 8 columns]
Work with columns
Select columns
Selecting a subset of columns works essentially the same for both dplyr::select()
and siuba.select()
.
|>
penguins select(bill_length_mm, sex)
# A tibble: 344 × 2
bill_length_mm sex
<dbl> <fct>
1 39.1 male
2 39.5 female
3 40.3 female
4 NA <NA>
5 36.7 female
6 39.3 male
7 38.9 female
8 39.2 male
9 34.1 <NA>
10 42 <NA>
# ℹ 334 more rows
(penguins>> select(_.bill_length_mm, _.sex)
)
bill_length_mm sex
0 39.1 male
1 39.5 female
2 40.3 female
3 NaN NaN
4 36.7 female
.. ... ...
339 55.8 male
340 43.5 female
341 49.6 male
342 50.8 male
343 50.2 female
[344 rows x 2 columns]
Rename columns
Renaming columns also works the same in dplyr::rename()
and siuba.rename()
.
|>
penguins rename(bill_length = bill_length_mm,
bill_depth = bill_depth_mm)
# A tibble: 344 × 8
species island bill_length bill_depth flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 female
3 Adelie Torgersen 40.3 18 195 3250 female
4 Adelie Torgersen NA NA NA NA <NA>
5 Adelie Torgersen 36.7 19.3 193 3450 female
6 Adelie Torgersen 39.3 20.6 190 3650 male
7 Adelie Torgersen 38.9 17.8 181 3625 female
8 Adelie Torgersen 39.2 19.6 195 4675 male
9 Adelie Torgersen 34.1 18.1 193 3475 <NA>
10 Adelie Torgersen 42 20.2 190 4250 <NA>
# ℹ 334 more rows
# ℹ 1 more variable: year <int>
(penguins>> rename(bill_length = _.bill_length_mm,
= _.bill_depth_mm)
bill_depth )
species island bill_length ... body_mass_g sex year
0 Adelie Torgersen 39.1 ... 3750.0 male 2007
1 Adelie Torgersen 39.5 ... 3800.0 female 2007
2 Adelie Torgersen 40.3 ... 3250.0 female 2007
3 Adelie Torgersen NaN ... NaN NaN 2007
4 Adelie Torgersen 36.7 ... 3450.0 female 2007
.. ... ... ... ... ... ... ...
339 Chinstrap Dream 55.8 ... 4000.0 male 2009
340 Chinstrap Dream 43.5 ... 3400.0 female 2009
341 Chinstrap Dream 49.6 ... 3775.0 male 2009
342 Chinstrap Dream 50.8 ... 4100.0 male 2009
343 Chinstrap Dream 50.2 ... 3775.0 female 2009
[344 rows x 8 columns]
Mutate columns
Transforming existing columns or creating new ones is an essential part of data analysis. dplyr::mutate()
and siuba.mutate()
are the work horses for these tasks. Both approaches have a very similar syntax and capabilities. Compared to other Python libraries, you don’t have to split up variable assignments across mutate blocks if you want to refer to a newly created variable in siuba
.
|>
penguins mutate(ones = 1,
bill_length = bill_length_mm / 10,
bill_length_squared = bill_length^2) |>
select(ones, bill_length_mm, bill_length, bill_length_squared)
# A tibble: 344 × 4
ones bill_length_mm bill_length bill_length_squared
<dbl> <dbl> <dbl> <dbl>
1 1 39.1 3.91 15.3
2 1 39.5 3.95 15.6
3 1 40.3 4.03 16.2
4 1 NA NA NA
5 1 36.7 3.67 13.5
6 1 39.3 3.93 15.4
7 1 38.9 3.89 15.1
8 1 39.2 3.92 15.4
9 1 34.1 3.41 11.6
10 1 42 4.2 17.6
# ℹ 334 more rows
(penguins>> mutate(ones = 1,
= _.bill_length_mm / 10,
bill_length = _.bill_length ** 2)
bill_length_squared >> select(_.ones, _.bill_length_mm, _.bill_length, _.bill_length_squared)
)
ones bill_length_mm bill_length bill_length_squared
0 1 39.1 3.91 15.2881
1 1 39.5 3.95 15.6025
2 1 40.3 4.03 16.2409
3 1 NaN NaN NaN
4 1 36.7 3.67 13.4689
.. ... ... ... ...
339 1 55.8 5.58 31.1364
340 1 43.5 4.35 18.9225
341 1 49.6 4.96 24.6016
342 1 50.8 5.08 25.8064
343 1 50.2 5.02 25.2004
[344 rows x 4 columns]
Relocate columns
dplyr::relocate()
provides options to change the positions of columns in a data frame, using the same syntax as dplyr::select()
. In addition, there are the options .after
and .before
to provide users with additional shortcuts.
The recommended way to relocate columns in siuba
is to use the siuba.select()
method, but there are no options as in dplyr::relocate()
. In fact, the safest way to consistently get the correct order of columns is to explicitly specify them.
|>
penguins relocate(c(species, bill_length_mm), .before = sex)
# A tibble: 344 × 8
island bill_depth_mm flipper_length_mm body_mass_g species bill_length_mm
<fct> <dbl> <int> <int> <fct> <dbl>
1 Torgersen 18.7 181 3750 Adelie 39.1
2 Torgersen 17.4 186 3800 Adelie 39.5
3 Torgersen 18 195 3250 Adelie 40.3
4 Torgersen NA NA NA Adelie NA
5 Torgersen 19.3 193 3450 Adelie 36.7
6 Torgersen 20.6 190 3650 Adelie 39.3
7 Torgersen 17.8 181 3625 Adelie 38.9
8 Torgersen 19.6 195 4675 Adelie 39.2
9 Torgersen 18.1 193 3475 Adelie 34.1
10 Torgersen 20.2 190 4250 Adelie 42
# ℹ 334 more rows
# ℹ 2 more variables: sex <fct>, year <int>
(penguins >> select(_.island, _.bill_depth_mm, _.flipper_length_mm, _.body_mass_g,
_.species, _.bill_length_mm, _.sex) )
island bill_depth_mm ... bill_length_mm sex
0 Torgersen 18.7 ... 39.1 male
1 Torgersen 17.4 ... 39.5 female
2 Torgersen 18.0 ... 40.3 female
3 Torgersen NaN ... NaN NaN
4 Torgersen 19.3 ... 36.7 female
.. ... ... ... ... ...
339 Dream 19.8 ... 55.8 male
340 Dream 18.1 ... 43.5 female
341 Dream 18.2 ... 49.6 male
342 Dream 19.0 ... 50.8 male
343 Dream 18.7 ... 50.2 female
[344 rows x 7 columns]
Work with groups of rows
Simple summaries by group
Let’s suppose we want to compute summaries by groups such as means or medians. Both packages are very similar again: on the R side you have dplyr::group_by()
and dplyr::summarize()
, while on the Python side you have siuba.group_by()
and siuba.summarize()
.
|>
penguins group_by(island) |>
summarize(bill_depth_mean = mean(bill_depth_mm, na.rm = TRUE))
# A tibble: 3 × 2
island bill_depth_mean
<fct> <dbl>
1 Biscoe 15.9
2 Dream 18.3
3 Torgersen 18.4
(penguins>> group_by(_.island)
>> summarize(bill_depth_mean = _.bill_depth_mm.mean())
)
island bill_depth_mean
0 Biscoe 15.874850
1 Dream 18.344355
2 Torgersen 18.429412
More complicated summaries by group
Typically, you want to create multiple different summaries by groups. dplyr
provides a lot of flexibility to create new variables on the fly and siuba
is able to replicate these capabilities perfectly!
|>
penguins group_by(island) |>
summarize(count = n(),
bill_depth_mean = mean(bill_depth_mm, na.rm = TRUE),
flipper_length_median = median(flipper_length_mm, na.rm = TRUE),
body_mass_sd = sd(body_mass_g, na.rm = TRUE),
share_female = mean(sex == "female", na.rm = TRUE))
# A tibble: 3 × 6
island count bill_depth_mean flipper_length_median body_mass_sd share_female
<fct> <int> <dbl> <dbl> <dbl> <dbl>
1 Biscoe 168 15.9 214 783. 0.491
2 Dream 124 18.3 193 417. 0.496
3 Torgers… 52 18.4 191 445. 0.511
(penguins>> group_by(_.island)
>> summarize(count = _.island.count(),
= _.bill_depth_mm.mean(),
bill_depth_mean = _.flipper_length_mm.median(),
flipper_length_median = _.body_mass_g.std(),
body_mass_sd = (_.sex == "female").mean())
share_female )
island count ... body_mass_sd share_female
0 Biscoe 168 ... 782.855743 0.476190
1 Dream 124 ... 416.644112 0.491935
2 Torgersen 52 ... 445.107940 0.461538
[3 rows x 6 columns]
Conclusion
This post highlights syntactic similarities and differences across R’s dplyr
package and Python’s siuba
library. One key point emerges: dplyr
heavily relies on NSE to enable a syntax that refrains from using strings and column selectors, something that is strictly speaking not possible in Python. However, siuba
’s approach using siu expressions and the pipe provide a very similar syntax to dplyr
. I want to close this post by emphasizing that both languages and packages have their own merits and I won’t strictly recommend one over the other - maybe in another post 😄
Footnotes
See the unifying principles of the tidyverse: https://design.tidyverse.org/unifying.html.↩︎